Characterization of the hepatic canalicular membrane transport of a model oligopeptide: ditekiren.
نویسندگان
چکیده
Many small oligopeptides are rapidly excreted unchanged into bile, which requires vectorial transport across the hepatocyte. To characterize the involved carrier system(s) at the canalicular membrane, studies were undertaken with vesicle preparations from the rat and the model pseudohexapeptide ditekiren. The initial uptake rate into inside-out-oriented vesicles was found to be ATP- and temperature-dependent and saturable. Kinetic analysis indicated the involvement of three processes: (1) an ATP-dependent carrier-mediated process (Km = 19.1 +/- 4.26 microM; mean +/- S.E.M.), Vmax = 140 +/- 29.4 pmol/mg of protein/15 sec), (2) an ATP-independent carrier-mediated transporter (Km = 17.2 +/- 9.58 microM, Vmax = 62.9 +/- 24.5 pmol/mg of protein/15 sec) and (3) a nonsaturable component. ATP-dependent uptake was inhibited by several other oligopeptides, which in the case of EMD 51921 was competitive. Cis-inhibition studies with known substrates for the canalicular bile salt (taurocholate), multispecific organic anion (glutathione disulfide) and P-glycoprotein (daunomycin, nicardipine, cyclosporin A) transporters indicated a major role for the latter carrier system. Inhibition of the initial uptake rate of ditekiren by daunomycin was found to be competitive in nature (Ki = 16 microM). These findings indicate that the biliary excretion of ditekiren and possibly other hydrophobic oligopeptides is mediated, in part, by P-glycoprotein and suggest a possible physiological role for this hepatic transporter.
منابع مشابه
Cation Exchange Nanocomposite Membrane Containing Mg(OH)2 Nanoparticles: Characterization and Transport Properties
In this study, ion exchange nanocomposite membranes was prepared by addition of Mg(OH)2 nanoparticles to a blend containing sulfonated polyphenylene oxide and sulfonated polyvinylchloride via a simple casting method. Magnesium hydroxide nanoparticles were synthesized via a facile sono-chemical reaction and were selected as filler additive in fabrication of ion exchange nanocomposite membranes. ...
متن کاملHepatic glutathione and glutathione S-conjugate transport mechanisms.
Glutathione (GSH) plays a critical role in many cellular processes, including the metabolism and detoxification of oxidants, metals, and other reactive electrophilic compounds of both endogenous and exogenous origin. Because the liver is a major site of GSH and glutathione S-conjugate biosynthesis and export, significant effort has been devoted to characterizing liver cell sinusoidal and canali...
متن کاملSynthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles
A new type of cation-exchange nanocomposite membranes was prepared by in-situ formation of ZnO nanoparticles in a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride via a simple one-step chemical method. As-synthesized nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, scan...
متن کاملSpecies differences in the transport activity for organic anions across the bile canalicular membrane.
Species differences in the transport activity mediated by canalicular multispecific organic anion transporter (cMOAT) were examined using temocaprilat, an angiotensin-converting enzyme inhibitor whose biliary excretion is mediated predominantly by cMOAT, and 2,4-dinitrophenyl-S-glutathione, a typical substrate for cMOAT, in a series of in vivo and in vitro experiments. Temocaprilat was infused ...
متن کاملCharacterization of Lithium Ion Transport Via Dialysis Process
Dialysis is a membrane based separation process in which the concentration gradient across the membrane is the driving force resulting in a flow of material from one side <span style="font-size: 10pt; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 281 1 شماره
صفحات -
تاریخ انتشار 1997